Open Access
An electrochemical scaffold sensor for rapid syphilis diagnosis
Author(s) -
Nathan Ogden,
Martin Kurnik,
Claudio Parolo,
Kevin W. Plaxco
Publication year - 2019
Publication title -
analyst (london. 1877. online)/analyst
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.998
H-Index - 153
eISSN - 1364-5528
pISSN - 0003-2654
DOI - 10.1039/c9an00455f
Subject(s) - syphilis , point of care , point of care testing , electrochemical gas sensor , electrochemistry , nanotechnology , medicine , biomedical engineering , computer science , chemistry , virology , materials science , pathology , electrode , human immunodeficiency virus (hiv)
The faster a disease can be diagnosed, the sooner effective treatment can be initiated, motivating a drive to replace standard laboratory techniques with point-of-care technologies that return answers in minutes rather than hours. Thus motivated, we describe the development of an E-DNA scaffold sensor for the rapid and convenient measurement of antibodies diagnostic of syphilis. To achieve this (and in contrast to previous sensors of this class, which relied on single, linear epitopes for detection), we utilized a near full-length antigen as the sensor's recognition element, allowing us to simultaneously display multiple epitopes. The resultant sensor is able to detect antibodies against Treponema pallidum pallidum, the causative agent of syphilis, at clinically relevant concentrations in samples in less than 10 min. Preliminary results obtained using sero-positive and sero-negative human samples suggest the clinical sensitivity and specificity of the approach compare well to current gold-standard tests, while being simple and rapid enough to deploy at the point of care.