z-logo
open-access-imgOpen Access
Intermolecular structural correlations in model globular and unconcatenated ring polymer liquids
Author(s) -
Zachary E. Dell,
Kenneth S. Schweizer
Publication year - 2018
Publication title -
soft matter
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 170
eISSN - 1744-6848
pISSN - 1744-683X
DOI - 10.1039/c8sm01722k
Subject(s) - exponent , intermolecular force , thermodynamics , degree of polymerization , dimensionless quantity , structure factor , excluded volume , polymer , physics , materials science , statistical physics , polymerization , condensed matter physics , quantum mechanics , molecule , nuclear magnetic resonance , philosophy , linguistics
We employ the field theoretic polymer integral equation theory to construct a segment-level theory for the thermodynamics and pair structure of dense liquids of interpenetrating ring polymers and a simple globule model. The latter is defined by a fractal mass distribution on all internal length scales with an exponent equal to the spatial dimension (dF = ds = 3). In an isochoric ensemble the dimensionless compressibility and pressure is predicted to vary exponentially with macromolecular volume fraction. An intermolecular correlation hole exists down to small length scales. This model appears to be useful for a recently studied experimental soft nanoparticle suspension, and also serves as a reference system for our analysis of ring liquids. Motivated by simulations, a two-fractal exponent ring model is adopted for the intramolecular structure factor. At smaller lengths it describes chain-like macromolecules, while on larger scales it corresponds to a space-filling object in the sense that dF = ds = 3. The crossover between these two regimes is of order the entanglement length of the linear chain analog. Based on a constant compressibility ensemble, the effective volume fraction grows at intermediate values of degree of polymerization (N), and crosses over to a very slow logarithmic growth at large N. A weaker intermolecular correlation hole is predicted. The number of nearest neighbor rings increases dramatically at small N, akin to linear chain melts, but then tends to saturate at large N, in accord with simulations. The tools developed may be relevant for other partially interpenetrating soft objects such as core-shell nanogels or microgels.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom