ADMET-score – a comprehensive scoring function for evaluation of chemical drug-likeness
Author(s) -
Longfei Guan,
Hongbin Yang,
Yingchun Cai,
Lixia Sun,
Peiwen Di,
Weihua Li,
Guixia Liu,
Yun Tang
Publication year - 2018
Publication title -
medchemcomm
Language(s) - English
Resource type - Journals
eISSN - 2040-2511
pISSN - 2040-2503
DOI - 10.1039/c8md00472b
Subject(s) - drug , drug discovery , drug development , pharmacology , function (biology) , key (lock) , computational biology , chemistry , medicine , computer science , biology , biochemistry , evolutionary biology , computer security
Chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET), play key roles in drug discovery and development. A high-quality drug candidate should not only have sufficient efficacy against the therapeutic target, but also show appropriate ADMET properties at a therapeutic dose. A lot of in silico models are hence developed for prediction of chemical ADMET properties. However, it is still not easy to evaluate the drug-likeness of compounds in terms of so many ADMET properties. In this study, we proposed a scoring function named the ADMET-score to evaluate drug-likeness of a compound. The scoring function was defined on the basis of 18 ADMET properties predicted via our web server admetSAR. The weight of each property in the ADMET-score was determined by three parameters: the accuracy rate of the model, the importance of the endpoint in the process of pharmacokinetics, and the usefulness index. The FDA-approved drugs from DrugBank, the small molecules from ChEMBL and the old drugs withdrawn from the market due to safety concerns were used to evaluate the performance of the ADMET-score. The indices of the arithmetic mean and p -value showed that the ADMET-score among the three data sets differed significantly. Furthermore, we learned that there was no obvious linear correlation between the ADMET-score and QED (quantitative estimate of drug-likeness). These results suggested that the ADMET-score would be a comprehensive index to evaluate chemical drug-likeness, and might be helpful for users to select appropriate drug candidates for further development.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom