Simulation of the gastric digestion of proteins of meat bolus using a reaction–diffusion model
Author(s) -
Jason Sicard,
PierreSylvain Mirade,
Stéphane Portanguen,
Sylvie Clerjon,
Alain Kondjoyan
Publication year - 2018
Publication title -
food and function
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.145
H-Index - 76
eISSN - 2042-650X
pISSN - 2042-6496
DOI - 10.1039/c8fo01120f
Subject(s) - bolus (digestion) , digestion (alchemy) , chemistry , food science , diffusion , chromatography , medicine , thermodynamics , physics
A reaction-diffusion mathematical model has been developed to predict the gastric digestion of meat proteins. The model takes into account pepsin diffusion and proton diffusion in bolus particles and the pH buffering capacity of meat. The computations show that the size of bolus particles and the change in gastric pH have a substantial effect on the percentage of protein digested in the stomach and that the pH buffering capacity of meat has to be accounted for to properly calculate the gastric digestibility of meat. The intensity of surface transfers between stomach fluid and bolus particles has a significant impact on protein digestibility, whereas the variation in pepsin content in the stomach between individuals appears to have little effect on protein digestibility. From a nutritional standpoint, the simulations show that meat protein digestibility is high under normal physiological stomach conditions. However, in a situation where masticatory capacity, hydrochloric acid secretion and gastric motor function performances are reduced, such as with advancing age, protein digestibility rapidly decreases, ultimately leading to near-zero digestibility value in the stomach in extreme cases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom