z-logo
open-access-imgOpen Access
Networks of micronized fat crystals grown under static conditions
Author(s) -
Tatiaikolaeva,
Ruud den Adel,
E. V. Velichko,
Wim G. Bouwman,
Daniel HermidaMerino,
Henk Van As,
A. Voda,
John van Duynhoven
Publication year - 2018
Publication title -
food and function
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.145
H-Index - 76
eISSN - 2042-650X
pISSN - 2042-6496
DOI - 10.1039/c8fo00148k
Subject(s) - crystal (programming language) , chemical engineering , materials science , crystallography , chemistry , computer science , engineering , programming language
Dispersing micronized fat crystals (MFCs) in oil is a novel route to largely decouple fat crystallisation and network formation and thus to simplify the manufacture of fat-continuous food products. MFCs dispersed in oil form a weak-interaction network organized by crystal aggregates in a continuous net of crystalline nanoplatelets. The rough surface of MFC nanoplatelets hampers stacking into one-dimensional aggregates, which explains the high mass fractal dimensions of the networks formed in MFC dispersions. Applying shear does not have a significant effect on the fractal dimensions of MFC networks, and MFC aggregates in the range of 5-10 μm remain intact. However, shear leads to a significant loss of storage modulus and yield stress over a time frame of an hour. This can be attributed to irreversible disruption of the continuous net of nanoplatelets. Rheo-SAXS revealed that shear releases nanoplatelets from the continuous net, which subsequently align in the shear field and undergo rapid recrystallisation. The release of thin and metastable nanoplatelets from the weak-link network bears relevance for simplified and more effective manufacturing of emulsified food products by effectively decoupling crystallisation, network formation and emulsification.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom