z-logo
open-access-imgOpen Access
Shape-controlled electrodeposition of single Pt nanocrystals onto carbon nanoelectrodes
Author(s) -
Ke Huang,
Jan Clausmeyer,
Long Luo,
Karalee Jarvis,
Richard M. Crooks
Publication year - 2018
Publication title -
faraday discussions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.255
H-Index - 110
eISSN - 1364-5498
pISSN - 1359-6640
DOI - 10.1039/c8fd00018b
Subject(s) - nanocrystal , materials science , carbon fibers , nanotechnology , composite material , composite number
In this paper, we report the electrosynthesis and characterization of individual, shape-controlled Pt nanocrystals (NCs) electrodeposited on carbon nanoelectrodes (CNEs). Single Pt NCs were deposited onto the CNEs using an empirically developed square-wave potential program. Characterization by scanning electron microscopy indicates that the sizes of Pt NCs are remarkably reproducible (relative standard deviation = 6%). Electrochemically active surface areas, determined by Cu underpotential deposition and H adsorption/desorption analyses, are also reproducible. Selected area electron diffraction indicates that each Pt NC is comprised of just one single crystal (no grain boundaries). Although different square-wave potential programs lead to different types of crystals, the Pt NCs discussed here have a concave hexoctahedral geometry bound primarily by {13 6 2} surface facets. The results in this report represent a first step toward our ultimate goal of studying electrocatalysis at individual, shape-controlled, single-crystal nanoparticles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom