Polyamidoxime chain length drives emergent metal-binding phenomena
Author(s) -
Lyndsey D. Earl,
Changwoo Do,
Yangyang Wang,
Carter W. Abney
Publication year - 2018
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/c8cp02198h
Subject(s) - chain (unit) , simple (philosophy) , metal , nanotechnology , chemical physics , biological system , computer science , statistical physics , materials science , chemistry , physics , biology , metallurgy , quantum mechanics , philosophy , epistemology
Emergence is complex behavior arising from the interactions of many simple constituents that do not display such behavior independently. Polyamidoxime (PAO) uranium adsorbents show such phenomena, as recent works articulate that the polymer binds uranium differently than the monomeric constituents. In order to investigate the origins of this emergent uranium-binding behavior, we synthesized a series of amidoxime polymers with low polydispersity and small molecules with lengths ranging from 1 to 125 repeat units. Following immersion in a uranyl-containing solution, the local, intermediate, and macroscopic structures were investigated by X-ray absorption fine structure (XAFS) spectroscopy, small angle neutron scattering (SANS), and dynamic light scattering (DLS). Fits of the extended XAFS (EXAFS) region revealed a progressive change in uranium coordination environment as a function of polymer molecular weight, identifying chain length as a driving force in emergent metal binding and resolving the controversy over how amidoxime adsorbents bind uranium.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom