3D Bragg coherent diffractive imaging of five-fold multiply twinned gold nanoparticle
Author(s) -
Jong Woo Kim,
Andrew Ulvestad,
Sohini Manna,
Ross Harder,
Eric E. Fullerton,
Oleg Shpyrko
Publication year - 2017
Publication title -
nanoscale
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.038
H-Index - 224
eISSN - 2040-3372
pISSN - 2040-3364
DOI - 10.1039/c7nr05028c
Subject(s) - fold (higher order function) , nanoparticle , materials science , coherent diffraction imaging , colloidal gold , optics , nanotechnology , crystallography , physics , chemistry , computer science , phase retrieval , fourier transform , quantum mechanics , programming language
The formation mechanism of five-fold multiply twinned nanoparticles has been a long-term topic because of their geometrical incompatibility. So, various models have been proposed to explain how the internal structure of the multiply twinned nanoparticles accommodates the constraints of the solid-angle deficiency. We investigate the internal structure, strain field and strain energy density of 600 nm sized five-fold multiply twinned gold nanoparticles quantitatively using Bragg coherent diffractive imaging, which is suitable for the study of buried defects and three-dimensional strain distribution with great precision. Our study reveals that the strain energy density in five-fold multiply twinned gold nanoparticles is an order of magnitude higher than that of the single nanocrystals such as an octahedron and triangular plate synthesized under the same conditions. This result indicates that the strain developed while accommodating an angular misfit, although partially released through the introduction of structural defects, is still large throughout the crystal.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom