Metal-mediated linear self-assembly of porphyrins
Author(s) -
Jennifer A. Wytko,
Romain Ruppert,
Christophe Jeandon,
Jean Weiss
Publication year - 2018
Publication title -
chemical communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.837
H-Index - 333
eISSN - 1364-548X
pISSN - 1359-7345
DOI - 10.1039/c7cc09650j
Subject(s) - porphyrin , covalent bond , metal , nanotechnology , materials science , self assembly , metal ions in aqueous solution , combinatorial chemistry , chemistry , photochemistry , organic chemistry
Porphyrin derivatives are highly relevant to biological processes such as light harvesting and charge separation. Their aromatic electronic structure and their accessible HOMO-LUMO gap render porphyrins highly attractive for the development of opto- and electro-active materials. Due to the often difficult covalent synthesis of multiporphyrins, self-assembly using metal complexation as the driving force can lead to well defined objects exhibiting a controlled morphology, which will be required to analyse and understand the electronic properties of porphyrin wires. This article presents two assembly approaches, namely by peripheral coordination or by binding to a metal ion in the porphyrin core, that are efficient and well designed for future developments requiring interactions with a surface.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom