Electrochemical sensing of urinary progesterone with molecularly imprinted poly(aniline-co-metanilic acid)s
Author(s) -
MeiHwa Lee,
Danny O’Hare,
HanZhang Guo,
ChienHsin Yang,
HungYin Lin
Publication year - 2016
Publication title -
journal of materials chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.316
H-Index - 101
eISSN - 2050-7518
pISSN - 2050-750X
DOI - 10.1039/c6tb00760k
Subject(s) - aniline , electrochemistry , materials science , nuclear chemistry , molecular imprinting , combinatorial chemistry , chemistry , organic chemistry , electrode , catalysis , selectivity
In this work, progesterone is imprinted into poly(aniline-co-metanilic acid) on the working electrode of an electrochemical sensing chip. This sensing chip was used directly to optimize the composition of the imprinting polymer. Poly(aniline-co-metanilic acid) deposited from a 1 : 3 molar ratio of aniline (ANI) : m-aminobenzenesulfonic acid (MSAN) had an imprinting effectiveness which led to a four-fold greater electrochemical response than pure polyaniline. The electrochemical sensing of progesterone had a limit of detection (LOD) less than 1.0 pg mL -1 , and the direct electrochemical response was very weak even at high interference concentrations. Results from potential interferents (urea, testosterone, creatinine and 17-β estradiol) are reported. The progesterone levels that were measured in a random urine analysis were compared with those obtained using a commercial ARCHITECT system, and the accuracy of the progesterone concentration was 89.0 ± 5.3% at a concentration of 0.64-5.27 ng mL -1 .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom