Improved spatial resolution for spot sampling in thermal desorption atomic force microscopy – mass spectrometry via rapid heating functions
Author(s) -
Suhas Somnath,
Stephen Jesse,
Gary J. Van Berkel,
Sergei V. Kalinin,
Olga S. Ovchinnikova
Publication year - 2017
Publication title -
nanoscale
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.038
H-Index - 224
eISSN - 2040-3372
pISSN - 2040-3364
DOI - 10.1039/c6nr09675a
Subject(s) - cantilever , sampling (signal processing) , mass spectrometry , thermal desorption , analytical chemistry (journal) , materials science , signal (programming language) , desorption , voltage , chemistry , nanotechnology , optics , physics , composite material , computer science , adsorption , organic chemistry , chromatography , quantum mechanics , detector , programming language
The key to advancing materials is to understand and control their structure and chemistry. However, thorough chemical characterization is challenging since existing techniques characterize only a few properties of the specimen, thereby necessitating multiple measurement platforms to acquire the necessary information. The multimodal combination of atomic force microscopy (AFM) and mass spectrometry (MS) transcends existing analytical capabilities for nanometer scale spatially resolved correlation of the chemical and physical properties of a sample surface. One such hybrid system employs heated AFM cantilevers for thermal desorption (TD) sampling of molecules from a surface and subsequent gas phase ionization and detection of the liberated species by MS. Herein, we report on the use of voltage pulse trains to tailor cantilever heating such that spot sampling size was reduced and mass spectral signal was improved compared to constant voltage, static heating of the cantilever. Desorption efficiency (DE), defined as the quotient of the mass spectral signal intensity and the volume of the desorption crater, was used to judge the effectiveness of a particular tailored heating function. To guide the development and optimization of the heating functions and aid in interpreting experimental results, a 1D finite element model was developed that predicted the cantilever response to different heating functions. Three tailored heating functions that used different combinations, magnitudes, and durations of rectangular voltage pulses, were used for surface spot sampling. The resultant sampling spot size and DE were compared to the same metrics obtained with the conventional method that uses a single voltage pulse. Using a model system composed of a thin film of ink containing pigment yellow 74 as a model system, desorption craters shrunk from 2 μm, using the conventional approach, to 310 nm using the optimum tailored heating function. This same pulsed heating function produced a 381× improvement in the DE and an 8× improvement in spatial resolution compared to the conventional heating approach showing that signal/amount of material sampled was improved significantly by this new cantilever heating strategy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom