z-logo
open-access-imgOpen Access
Towards ALD thin film stabilized single-atom Pd1catalysts
Author(s) -
Mar Piernavieja-Hermida,
Zheng Lu,
Anderson White,
Ke-Bin Low,
Tianpin Wu,
Jeffrey W. Elam,
Zili Wu,
Lei Yu
Publication year - 2016
Publication title -
nanoscale
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.038
H-Index - 224
eISSN - 2040-3372
pISSN - 2040-3364
DOI - 10.1039/c6nr04403d
Subject(s) - catalysis , atomic layer deposition , x ray absorption spectroscopy , materials science , thin film , adsorption , methanol , thermal decomposition , carbon monoxide , chemical engineering , reactivity (psychology) , thermal stability , absorption spectroscopy , inorganic chemistry , nanotechnology , chemistry , organic chemistry , medicine , physics , alternative medicine , pathology , quantum mechanics , engineering
Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. Here we study a strategy for synthesizing thin film stabilized single-atom Pd1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd1 was anchored on the surface through chlorine sites. The thin film stabilized Pd1 catalysts were thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO2 protected Pd1 was less active at high temperature. Pd L3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. These results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom