z-logo
open-access-imgOpen Access
Ab initio molecular dynamics determination of competitive O2vs. N2 adsorption at open metal sites of M2(dobdc)
Author(s) -
Marie V. Parkes,
Jeffery A. Greathouse,
David Hart,
Dorina F. Sava Gallis,
Tina M. Nenoff
Publication year - 2016
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/c6cp00768f
Subject(s) - adsorption , ab initio , molecular dynamics , chemistry , metal , crystallography , materials science , computational chemistry , organic chemistry
The separation of oxygen from nitrogen using metal-organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. This unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom