Insights into the physical chemistry of materials from advances in HAADF-STEM
Author(s) -
Karl Sohlberg,
Timothy J. Pennycook,
Wu Zhou,
Stephen J. Pennycook
Publication year - 2014
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/c4cp04232h
Subject(s) - scanning transmission electron microscopy , nanotechnology , electron energy loss spectroscopy , high resolution , high resolution transmission electron microscopy , direct imaging , dark field microscopy , materials science , chemistry , transmission electron microscopy , physics , microscopy , optics , remote sensing , geology
The observation that, "New tools lead to new science"[P. S. Weiss, ACS Nano., 2012, 6(3), 1877-1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at sub-angstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging for probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom