z-logo
open-access-imgOpen Access
New mechanistic insights to the O(3P) + propene reaction from multiplexed photoionization mass spectrometry
Author(s) -
John D. Savee,
Oliver Welz,
Craig A. Taatjes,
David L. Osborn
Publication year - 2012
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/c2cp41200d
Subject(s) - photoionization , chemistry , intersystem crossing , mass spectrometry , singlet state , propene , branching fraction , photochemistry , branching (polymer chemistry) , analytical chemistry (journal) , ion , ionization , excited state , atomic physics , organic chemistry , chromatography , physics , catalysis
The reaction of O((3)P) with propene (C(3)H(6)) has been examined using tunable vacuum ultraviolet radiation and time-resolved multiplexed photoionization mass spectrometry at 4 Torr and 298 K. The temporal and isomeric resolution of these experiments allow the separation of primary from secondary reaction products and determination of branching ratios of 1.00, 0.91 ± 0.30, and 0.05 ± 0.04 for the primary product channels CH(3) + CH(2)CHO, C(2)H(5) + HCO, and H(2) + CH(3)CHCO, respectively. The H + CH(3)CHCHO product channel was not observable for technical reasons in these experiments, so literature values for the branching fraction of this channel were used to convert the measured product branching ratios to branching fractions. The results of the present study, in combination with past experimental and theoretical studies of O((3)P) + C(3)H(6), identify important pathways leading to products on the C(3)H(6)O potential energy surface (PES). The present results suggest that up to 40% of the total product yield may require intersystem crossing from the initial triplet C(3)H(6)O PES to the lower-lying singlet PES.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom