z-logo
open-access-imgOpen Access
First-principles molecular dynamics simulations of condensed-phase V-type nerve agent reaction pathways and energy barriers
Author(s) -
Richard H. Gee,
IFeng W. Kuo,
Sarah C. Chinn,
Ellen Raber
Publication year - 2012
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/c2cp23126c
Subject(s) - molecular dynamics , chemical physics , dynamics (music) , reaction dynamics , phase (matter) , computational chemistry , type (biology) , potential energy , energy (signal processing) , materials science , chemistry , physics , classical mechanics , molecule , quantum mechanics , ecology , acoustics , biology
Computational studies of condensed-phase chemical reactions are challenging in part because of complexities in understanding the effects of the solvent environment on the reacting chemical species. Such studies are further complicated due to the demanding computational resources required to implement high-level ab initio quantum chemical methods when considering the solvent explicitly. Here, we use first-principles molecular dynamics simulations to examine condensed-phase decontamination reactions of V-type nerve agents in an explicit aqueous solvent. Our results include a detailed study of hydrolysis, base-hydrolysis, and nucleophilic oxidation of both VX and R-VX, as well as their protonated counterparts (i.e., VXH(+) and R-VXH(+)). The decontamination mechanisms and chemical reaction energy barriers, as determined from our simulations, are found to be in good agreement with experiment. The results demonstrate the applicability of using such simulations to assist in understanding new decontamination technologies or other applications that require computational screening of condensed-phase chemical reaction mechanisms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom