z-logo
open-access-imgOpen Access
Sensing applications of synthetic transport systems
Author(s) -
Toshihide Takeuchi,
Stefan Matile
Publication year - 2012
Publication title -
chemical communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.837
H-Index - 333
eISSN - 1364-548X
pISSN - 1359-7345
DOI - 10.1039/c2cc36729g
Subject(s) - supramolecular chemistry , analyte , nanotechnology , biosensor , aptamer , signal (programming language) , computer science , chemistry , materials science , biology , molecule , organic chemistry , genetics , programming language
This feature article offers a comprehensive account of a decade of research devoted to the combination of the grand sensing principles with synthetic transport systems that act in lipid bilayers. Differential sensing, that is pattern generation and pattern recognition, is exemplified with an artificial nose. The aptamer version of immunosensing is realized with sticky-end polymers of DNA double helices for both signal generation and signal transduction. Biosensing, that is the use of enzymes for signal generation, is exemplified first with an artificial tongue and then expanded to analytes such as cholesterol, phytate or polyphenols. Enjoyable also for the general reader, we hope that this account will inspire supramolecular organic as well as analytical, physical and biological chemists.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom