z-logo
open-access-imgOpen Access
Cyclodextrin-based gene delivery systems
Author(s) -
Carmen Ortiz Mellet,
José M. Garcı́a Fernández,
Juan M. Benito
Publication year - 2010
Publication title -
chemical society reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.598
H-Index - 513
eISSN - 1460-4744
pISSN - 0306-0012
DOI - 10.1039/c0cs00019a
Subject(s) - cyclodextrin , supramolecular chemistry , nanotechnology , gene delivery , drug delivery , combinatorial chemistry , chemistry , covalent bond , conjugate , computational biology , materials science , genetic enhancement , gene , biochemistry , biology , organic chemistry , molecule , mathematical analysis , mathematics
Cyclodextrin (CD) history has been largely dominated by their unique ability to form inclusion complexes with guests fitting in their hydrophobic cavity. Chemical funcionalization was soon recognized as a powerful mean for improving CD applications in a wide range of fields, including drug delivery, sensing or enzyme mimicking. However, 100 years after their discovery, CDs are still perceived as novel nanoobjects of undeveloped potential. This critical review provides an overview of different strategies to promote interactions between CD conjugates and genetic material by fully exploiting the inside-outside/upper-lower face anisotropy of the CD nanometric platform. Covalent modification, self-assembling and supramolecular ligation can be put forward with the ultimate goal to build artificial viruses for programmed and efficient gene therapy (222 references).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom