A view on phosphate ester photochemistry by time-resolved solid state NMR. Intramolecular redox reaction of caged ATP
Author(s) -
Alexey V. Cherepanov,
Elena V. Doroshenko,
Jörg Matysik,
Simon de Vries,
Huub J. M. de Groot
Publication year - 2008
Publication title -
physical chemistry chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.053
H-Index - 239
eISSN - 1463-9084
pISSN - 1463-9076
DOI - 10.1039/b806677a
Subject(s) - chemistry , moiety , protonation , photochemistry , intramolecular force , nuclear magnetic resonance spectroscopy , reaction intermediate , redox , catalysis , stereochemistry , inorganic chemistry , organic chemistry , ion
The light-driven intramolecular redox reaction of adenosine-5'-triphosphate-[P3-(1-(2-nitrophenyl)-ethyl)]ester (caged ATP) has been studied in frozen aqueous solution using time-resolved solid state NMR spectroscopy under continuous illumination conditions. Cleavage of the phosphate ester bond leads to 0.3, 1.36, and 6.06 ppm downfield shifts of the alpha-, beta-, and gamma-phosphorus resonances of caged ATP, respectively. The observed rate of ATP formation is 2.4 +/- 0.2 h(-1) at 245 K. The proton released in the reaction binds to the triphosphate moiety of the nascent ATP, causing the upfield shifts of the 31P resonances. Analyses of the reaction kinetics indicate that bond cleavage and proton release are two sequential processes in the solid state, suggesting that the 1-hydroxy,1-(2-nitrosophenyl)-ethyl carbocation intermediate is involved in the reaction. The beta-phosphate oxygen atom of ATP is protonated first, indicating its proximity to the reaction center, possibly within hydrogen bonding distance. The residual linewidth kinetics are interpreted in terms of chemical exchange processes, hydrogen bonding of the beta-phosphate oxygen atom and evolution of the hydrolytic equilibrium at the triphosphate moiety of the nascent ATP. Photoreaction of caged ATP in situ gives an opportunity to study structural kinetics and catalysis of ATP-dependent enzymes by NMR spectroscopy in rotating solids.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom