Water toxicity monitoring using Vibrio fischeri: a method free of interferences from colour and turbidity
Author(s) -
Elsa Correia Faria,
Bernard J. Treves Brown,
Richard D. Snook
Publication year - 2004
Publication title -
journal of environmental monitoring
Language(s) - English
Resource type - Journals
eISSN - 1464-0333
pISSN - 1464-0325
DOI - 10.1039/b311137g
Subject(s) - turbidity , vibrio , wastewater , reagent , toxicity , chemistry , chromatography , microplastics , environmental chemistry , environmental science , pulp and paper industry , environmental engineering , bacteria , biology , ecology , genetics , organic chemistry , engineering
In this paper the kinetic method for the determination of toxicity using Vibrio fischeri is described and suggested as a potential method for the continuous screening of wastewater toxicity. The kinetic method was demonstrated to be free from interferences due to colour and turbidity normally observed when testing wastewater samples with this organism. This is of great importance for the application of the method to remote toxicity screening of wastewaters. The effect of colour, investigated using 50 ppm Zn(2+) solutions containing the food-dye tropaeolin O, and the effect of turbidity, investigated using 50 ppm Zn(2+) solutions containing white optically reflective and coloured optically absorbing polystyrene beads, is reported. It was also found that the design of the light detection system of the instrument ensures efficient collection of the light scattered by particles in the sample, which enables a greater range of turbid samples to be tested. In addition the natural light decay was found to be negligible during the duration of a 10 min test and thus one channel would be enough to carry out the tests. This would mean halving the quantity of bacterial reagent used and reducing the cost of the tests.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom