
Suppression of colitis by adoptive transfer of helminth antigen-treated dendritic cells requires interleukin-4 receptor-α signaling
Author(s) -
Chelsea E. Matisz,
Berenice Faz-López,
Emma A. Thomson,
Ala Al Rajabi,
Fernando Lopes,
Luis I. Terrazas,
A. Wang,
Keith A. Sharkey,
Derek M. McKay
Publication year - 2017
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep40631
Subject(s) - adoptive cell transfer , immunology , colitis , antigen , biology , immune system , t cell
Infection with helminth parasites has been explored as a treatment for autoimmune and inflammatory diseases. As helminth antigens have potent immunomodulation properties capable of inducing regulatory programs in a variety of cell types, transferring cells treated with helminth antigens represents a novel extension to helminth therapy. Previous work determined that transfer of bone marrow-derived dendritic cells (DC) pulsed with a crude extract of the tapeworm Hymenolepis diminuta (HD) can suppress colitis in recipient mice. The present study explored the mechanism of disease suppression and the importance of interleukin (IL)-4 signaling. Transfer of HD-DCs suppressed dinitrobenzene sulfonic acid (DNBS)-induced colitis through activation of recipient IL-4 receptor-α. The transferred HD-DCs required IL-4Rα and the capacity to secrete IL-10 to drive IL-4 and IL-10 production and to suppress colitis in recipient mice. Treatment of DCs with IL-4 evokes an alternatively activated phenotype, but adoptive transfer of these cells did not affect the outcome of colitis. Collectively, these studies demonstrate the complexity between IL-4 and IL-10 in donor cells and recipient, and the requirement for parasite- and host-derived factors in this novel form of cell therapy. Thus IL-4Rα signaling is revealed as a pathway that could be exploited for helminth antigen cell-based therapy.