z-logo
open-access-imgOpen Access
Arctic lakes show strong decadal trend in earlier spring ice-out
Author(s) -
Tereza Šmejkalová,
Mary E. Edwards,
Jadunandan Dash
Publication year - 2016
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep38449
Subject(s) - circumpolar star , phenology , arctic , environmental science , physical geography , climatology , arctic ice pack , spring (device) , the arctic , geography , oceanography , ecology , geology , biology , mechanical engineering , engineering
The timing of the seasonal freeze-thaw cycle of arctic lakes affects ecological processes and land-atmosphere energy fluxes. We carried out detailed ice-phenology mapping of arctic lakes, based on daily surface-reflectance time series for 2000–2013 from MODIS at 250 m spatial resolution. We used over 13,300 lakes, area >1 km 2 , in five study areas distributed evenly across the circumpolar Arctic — the first such phenological dataset. All areas showed significant trends towards an earlier break-up, stronger than previously reported. The mean shift in break-up start ranged from −0.10 days/year (Northern Europe) to −1.05 days/year (central Siberia); the shift in break-up end was between −0.14 and −0.72 days/year. Finally, we explored the effect of temperature on break-up timing and compared results among study areas. The 0 °C isotherm shows the strongest relationship (r = 0.56–0.81) in all study areas. If the trend in early break-up continues, rapidly changing ice phenology will likely generate significant, arctic-wide impacts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom