
5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts
Author(s) -
Elena F. M. Manzoni,
Georgia Pennarossa,
Magda deEguileor,
Gianluca Tettamanti,
F. Gandolfi,
Tiziana A. L. Brevini
Publication year - 2016
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep37017
Subject(s) - demethylating agent , epigenetics , chromatin , histone , microbiology and biotechnology , dna methylation , downregulation and upregulation , transcription factor , somatic cell , biology , cellular differentiation , phenotype , methylation , chemistry , cancer research , gene expression , genetics , gene
Phenotype definition is controlled by epigenetic regulations that allow cells to acquire their differentiated state. The process is reversible and attractive for therapeutic intervention and for the reactivation of hypermethylated pluripotency genes that facilitate transition to a higher plasticity state. We report the results obtained in human fibroblasts exposed to the epigenetic modifier 5-azacytidine (5-aza-CR), which increases adult cell plasticity and facilitates phenotype change. Although many aspects controlling its demethylating action have been widely investigated, the mechanisms underlying 5-aza-CR effects on cell plasticity are still poorly understood. Our experiments confirm decreased global methylation, but also demonstrate an increase of both Formylcytosine (5fC) and 5-Carboxylcytosine (5caC), indicating 5-aza-CR ability to activate a direct and active demethylating effect, possibly mediated via TET2 protein increased transcription. This was accompanied by transient upregulation of pluripotency markers and incremented histone expression, paralleled by changes in histone acetylating enzymes. Furthermore, adult fibroblasts reshaped into undifferentiated progenitor-like phenotype, with a sparse and open chromatin structure. Our findings indicate that 5-aza-CR induced somatic cell transition to a higher plasticity state is activated by multiple regulations that accompany the demethylating effect exerted by the modifier.