
Necrostatin-1 treatment inhibits osteocyte necroptosis and trabecular deterioration in ovariectomized rats
Author(s) -
Hongwang Cui,
Yaping Zhu,
Qiming Yang,
Weikang Zhao,
Shiyang Zhang,
Ao Zhou,
Dianming Jiang
Publication year - 2016
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep33803
Subject(s) - ovariectomized rat , osteocyte , necroptosis , medicine , chemistry , biochemistry , programmed cell death , in vitro , hormone , osteoblast , apoptosis
Estrogen (E2) deficiency has been associated with accelerated osteocyte apoptosis. Our previous study showed necroptosis accelerated the loss of osteocytes in E2 deficiency-induced osteoporosis in rats in addition to apoptosis, but the mechanism involved remains. Necroptosis is a caspase-independent form of programmed cell death. In the necroptosis pathway, receptor interaction proteins 1 and 3 (RIP1/3) play vital roles. Necrostatin-1 (Nec-1) has been confirmed to be a specific inhibitor of necroptosis. However, the effect of Nec-1 on postmenopausal osteoporosis remains ambiguous. The aim of this study was to investigate the effect of Nec-1 on osteocytes in ovariectomized (OVX) rats. We found that an increased number of necroptotic osteocytes was related to the production of tumor necrosis factor-alpha (TNF-α) in OVX rats. Treatment with Nec-1 significantly decreased RIP1 and RIP3 expression in OVX rats and inhibited osteocyte necroptosis induced by TNF-α in vitro . Both E2 and Nec-1 treatment markedly ameliorated trabecular bone deterioration. Nec-1 also significantly elevated the levels of bone formation markers and decreased bone resorption markers. These data suggest that the role of Nec-1 on alleviating bone loss might be associated with Nec-1 restraining TNF-α-induced osteocyte necroptosis in rats with E2 deficiency-induced osteoporosis. This process may represent a novel therapeutic strategy for the treatment of postmenopausal osteoporosis.