z-logo
open-access-imgOpen Access
Dihydrotestosterone synthesis pathways from inactive androgen 5α-androstane-3β,17β-diol in prostate cancer cells: Inhibition of intratumoural 3β-hydroxysteroid dehydrogenase activities by abiraterone
Author(s) -
Tasuke Ando,
Tsutomu Nishiyama,
Itsuhiro Takizawa,
Fumio Ishizaki,
Yoshimichi Miyashiro,
Kazuki Takeda,
Noboru Hara,
Yoshihiko Tomita
Publication year - 2016
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep32198
Subject(s) - androstenediol , dihydrotestosterone , androgen , dehydroepiandrosterone , prostate cancer , endocrinology , medicine , testosterone (patch) , chemistry , cancer research , cancer , hormone
Intratumoural dihydrotestosterone (DHT) synthesis could be an explanation for castration resistance in prostate cancer (PC). By using liquid chromatography-mass spectrometry, we evaluated the intratumoral DHT synthesis from 5α-androstane-3β,17β-diol (3β-diol), which is inactive androgen metabolized from DHT. 3β-diol had biochemical potential to be converted to DHT via three metabolic pathways and could stimulate PC cell growth. Especially, 3β-diol was not only converted back to upstream androgens such as dehydroepiandrosterone (DHEA) or Δ5-androstenediol but also converted directly to DHT which is the main pathway from 3β-diol to DHT. Abiraterone had a significant influence on the metabolism of DHEA, epiandrosterone and 3β-diol, by the inhibition of the intratumoural 3β-hydroxysteroid dehydrogenase (3β-HSD) activities which is one of key catalysts in androgen metabolic pathway. The direct-conversion of 3β-diol to DHT was catalysed by 3β-HSD and abiraterone could inhibit this activity of 3β-HSD. These results suggest that PC had a mechanism of intratumoural androgen metabolism to return inactive androgen to active androgen and intratumoural DHT synthesis from 3β-diol is important as one of the mechanisms of castration resistance in PC. Additionally, the inhibition of intratumoural 3β-HSD activity could be a new approach to castration-resistant prostate cancer treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here