z-logo
open-access-imgOpen Access
Impact of defect occupation on conduction in amorphous Ge2Sb2Te5
Author(s) -
Matthias Kaes,
Martin Salinga
Publication year - 2016
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep31699
Subject(s) - amorphous solid , phase change memory , condensed matter physics , materials science , thermal conduction , poole–frenkel effect , phase (matter) , optoelectronics , engineering physics , phase change , physics , chemistry , composite material , organic chemistry , quantum mechanics
Storage concepts employing the resistance of phase-change memory (PRAM) have matured in recent years. Attempts to model the conduction in the amorphous state of phase-change materials dominating the resistance of PRAM devices commonly invoke a connection to the electronic density-of-states (DoS) of the active material in form of a “distance between trap states s ”. Here, we point out that s depends on the occupation of defects and hence on temperature. To verify this, we numerically study how the occupation in the DoS of Ge 2 Sb 2 Te 5 is affected by changes of temperature and illumination. Employing a charge-transport model based on the Poole-Frenkel effect, we correlate these changes to the field- and temperature-dependent current-voltage characteristics of lateral devices of amorphous Ge 2 Sb 2 Te 5 , measured in darkness and under illumination. In agreement with our calculations, we find a pronounced temperature-dependence of s . As the device-current depends exponentially on the value of s , accounting for its temperature-dependence has profound impact on device modeling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here