z-logo
open-access-imgOpen Access
Decreasing but still significant facilitation effect of cold-season macrophytes on wetlands purification function during cold winter
Author(s) -
Xiangxu Zou,
Hui Zhang,
Jiane Zuo,
Penghe Wang,
Dehua Zhao,
Shuqing An
Publication year - 2016
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep27011
Subject(s) - macrophyte , wetland , facilitation , cold winter , winter season , cold climate , environmental science , cold tolerance , ecology , biology , geography , climatology , meteorology , botany , neuroscience , geology
To identify the facilitation effect of a cool-season aquatic macrophyte (FE am ) for use in effluent purification via constructed floating wetlands (CFWs) and to determine the possible pathways used during a winter period with an average temperature of less than 5 °C, pilot-scale CFWs were planted with the cold-season macrophyte Oenanthe clecumbens and were operated as batch systems. Although some leaves withered, the roots retained relatively high levels of activity during the winter, which had average air and water temperatures of 3.63 and 5.04 °C, respectively. The N and P removal efficiencies in CFWs decreased significantly in winter relative to those in late autumn. The presence of cool-season plants resulted in significant improvements in N and P removal, with a FE am of 15.23–25.86% in winter. Microbial N removal accounted for 71.57% of the total N removed in winter, and the decrease in plant uptake was the dominant factor in the wintertime decrease in N removal relative to that in late autumn. These results demonstrate the importance of cold-season plants in CFWs for the treatment of secondary effluent during cold winters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here