
A gain-of-function ACTC1 3′UTR mutation that introduces a miR-139-5p target site may be associated with a dominant familial atrial septal defect
Author(s) -
Ye Wang,
Xinwei Du,
Zaiwei Zhou,
Jun Jiang,
Zhen Zhang,
Lincai Ye,
Haifa Hong
Publication year - 2016
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep25404
Subject(s) - mutation , gain of function , function (biology) , genetics , three prime untranslated region , computational biology , biology , medicine , untranslated region , bioinformatics , gene , messenger rna
The ostium secundum atrial septal defect (ASDII) is the most common type of congenital heart disease and is characterized by a left to right shunting of oxygenated blood caused by incomplete closure of the septum secundum. We identified a familial form of isolated ASDII that affects four individuals in a family of five and shows autosomal dominant inheritance. By whole genome sequencing, we discovered a new mutation (c.*1784T > C) in the 3′-untranslated region (3′UTR) of ACTC1 , which encodes the predominant actin in the embryonic heart. Further analysis demonstrated that the c.*1784T > C mutation results in a new target site for miRNA-139-5p, a microRNA that is involved in cell migration, invasion, and proliferation. Functional analysis demonstrated that the c.*1784T > C mutation specifically downregulates gene expression in a luciferase assay. Additionally, miR-139-5p mimic causes further decrease, whereas miR-139-5p inhibitor can dramatically rescue the decline in gene expression caused by this mutation. These findings suggest that the familial ASDII may be a result of an ACTC1 3′UTR gain-of-function mutation caused by the introduction of a new miR-139-5p target site. Our results provide the first evidence of a pathogenic mutation in the ACTC1 3′UTR that may be associated with familial isolated ASDII.