
Altered Intrinsic Regional Activity and Interregional Functional Connectivity in Post-stroke Aphasia
Author(s) -
Maolin Yang,
Jiao Li,
Yibo Li,
Rong Li,
Yajing Pang,
Dezhong Yao,
Wei Liao,
Huafu Chen
Publication year - 2016
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/srep24803
Subject(s) - aphasia , neuroscience , functional magnetic resonance imaging , functional connectivity , stroke (engine) , neuroimaging , lateralization of brain function , psychology , medicine , physical medicine and rehabilitation , physics , thermodynamics
Several neuroimaging studies have examined cerebral function in patients who suffer from aphasia, but the mechanism underlying this disorder remains poorly understood. In this study, we examined alterations in the local regional and remote interregional network cerebral functions in aphasia combined with amplitude of low-frequency fluctuations and interregional functional connectivity (FC) using resting-state functional magnetic resonance imaging. A total of 17 post-stroke aphasic patients, all having suffered a stroke in the left hemisphere, as well as 20 age- and sex-matched healthy controls, were enrolled in this study. The aphasic patients showed significantly increased intrinsic regional activity mainly in the contralesional mesial temporal (hippocampus/parahippocampus, [HIP/ParaHIP]) and lateral temporal cortices. In addition, intrinsic regional activity in the contralesional HIP/ParaHIP was negatively correlated with construction score. Aphasic patients showed increased remote interregional FC between the contralesional HIP/ParaHIP and fusiform gyrus, but reduced FC in the ipsilesional occipital and parietal cortices. These findings suggested that the intrinsic regional brain dysfunctions in aphasia were related to interregional functional connectivity. Changes in the intrinsic regional brain activity and associated remote functional connectivity pattern would provide valuable information to enhance the understanding of the pathophysiological mechanisms of aphasia.