
Adeno-associated virus-mediated expression and constitutive secretion of NPY or NPY13-36 suppresses seizure activity in vivo
Author(s) -
Sandrine C. Foti,
Rebecca P. Haberman,
R. Jude Samulski,
Thomas J. McCown
Publication year - 2007
Publication title -
gene therapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.332
H-Index - 159
eISSN - 1476-5462
pISSN - 0969-7128
DOI - 10.1038/sj.gt.3303013
Subject(s) - neuropeptide y receptor , biology , adeno associated virus , secretion , medicine , endocrinology , kainic acid , receptor , viral vector , in vivo , neuropeptide , vector (molecular biology) , recombinant dna , gene , glutamate receptor , biochemistry , genetics
Neuropeptide Y (NPY) is a 36-amino-acid peptide that attenuates seizure activity following direct infusion or adeno-associated virus (AAV)-mediated expression in the central nervous system. However, NPY activates all NPY receptor subtypes, potentially causing unwanted side effects. NPY13-36 is a C-terminal peptide fragment of NPY that primarily activates the NPY Y2 receptor, thought to mediate the antiseizure activity. Therefore, we investigated if recombinant adeno-associated virus-mediated expression and constitutive secretion of NPY or NPY13-36 could alter limbic seizure sensitivity. Rats received bilateral piriform cortex infusions of AAV vectors that express and constitutively secrete full-length NPY (AAV-FIB-NPY) or NPY13-36 (AAV-FIB-NPY13-36). Control rats received no infusion, as we have previously shown that vectors expressing and secreting reporter genes like GFP (AAV-FIB-EGFP), as well as vectors expressing peptides that lack secretion sequences (AAV-GAL) have no effect on seizures. One week later, all animals received kainic acid (10 mg kg(-1), intraperitoneally), and the latencies to wet dog shakes and limbic seizure behaviors were determined. Although both control and vector-treated rats developed wet dog shake behaviors with similar latencies, the latencies to class III and class IV limbic seizures were significantly prolonged in both NPY- and NPY13-36-treated groups. Thus, AAV-mediated expression and constitutive secretion of NPY and NPY13-36 is effective in attenuating limbic seizures, and provides a platform for delivering therapeutic peptide fragments with increased receptor selectivity.