z-logo
Premium
Methylation: lost in hydroxylation?
Author(s) -
Trewick Sarah C.,
McLaughlin Paul J.,
Allshire Robin C.
Publication year - 2005
Publication title -
embo reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.584
H-Index - 184
eISSN - 1469-3178
pISSN - 1469-221X
DOI - 10.1038/sj.embor.7400379
Subject(s) - demethylase , histone methylation , histone methyltransferase , histone , chromatin , histone code , histone h3 , histone h2a , biochemistry , biology , methylation , protein methylation , histone h1 , chemistry , microbiology and biotechnology , dna methylation , methyltransferase , nucleosome , gene , gene expression
Methylation of histone tails is a key determinant in forming active and silent states of chromatin. Histone methylation was regarded as irreversible until the recent identification of a lysine‐specific histone demethylase (LSD1), which acts specifically on mono‐ and dimethylated histone H3 lysine 4. Here, we propose that the fission yeast protein Epe1 is a putative histone demethylase that could act by oxidative demethylation. Epe1 modulates the stability of silent chromatin and contains a JmjC domain. The Epe1 protein can be modelled onto the structure of the 2‐oxoglutarate‐Fe(II)‐dependent dioxygenase, factor inhibiting hypoxia inducible factor (FIH), which is a protein hydroxylase that also contains a JmjC domain. Thus, Epe1 and certain other chromatin‐associated JmjC‐domain proteins may be protein hydroxylases that catalyse a novel histone modification. Another intriguing possibility is that, by hydroxylating the methyl groups, Epe1 and certain other JmjC‐domain proteins may be able to demethylate mono‐, di‐ or trimethylated histones.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here