z-logo
Premium
Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae
Author(s) -
Colson Isabelle,
Delneri Daniela,
Oliver Stephen G
Publication year - 2004
Publication title -
embo reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.584
H-Index - 184
eISSN - 1469-3178
pISSN - 1469-221X
DOI - 10.1038/sj.embor.7400123
Subject(s) - saccharomyces cerevisiae , chromosomal translocation , biology , genetics , chemostat , saccharomyces , genome , yeast , chromosome , gene , bacteria
Yeast species have undergone extensive genome reorganization in their evolutionary history, including variations in chromosome number and large chromosomal rearrangements, such as translocations. To determine directly the contribution of chromosomal translocations to the whole organism's fitness, we devised a strategy to construct in Saccharomyces cerevisiae collinear ‘evolutionary mimics’ of other species originally differing by the presence of reciprocal translocations in their genome. A modification of the Cre/ lox P system was used to create in S. cerevisiae the translocations detected in the sibling species Saccharomyces mikatae IFO 1815 and 1816. Competition experiments under different physiological conditions showed that the translocated strains of S. cerevisiae consistently outcompeted the reference S. cerevisiae strain with no translocation, both in batch and chemostat culture, especially under glucose limitation. These results indicate that chromosomal translocations in Saccharomyces may have an adaptive significance, and lend support to a model of fixation by natural selection of reciprocal translocations in Saccharomyces species.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here