z-logo
Premium
Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast
Author(s) -
Grossmann Guido,
Opekarová Miroslava,
Malinsky Jan,
WeigMeckl Ina,
Tanner Widmar
Publication year - 2007
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/sj.emboj.7601466
Subject(s) - biology , membrane , yeast , membrane protein , saccharomyces cerevisiae , microbiology and biotechnology , biophysics , biochemistry , peripheral membrane protein , transport protein , integral membrane protein
The plasma membrane potential is mainly considered as the driving force for ion and nutrient translocation. Using the yeast Saccharomyces cerevisiae as a model organism, we have discovered a novel role of the membrane potential in the organization of the plasma membrane. Within the yeast plasma membrane, two non‐overlapping sub‐compartments can be visualized. The first one, represented by a network‐like structure, is occupied by the proton ATPase, Pma1, and the second one, forming 300‐nm patches, houses a number of proton symporters (Can1, Fur4, Tat2 and HUP1) and Sur7, a component of the recently described eisosomes. Evidence is presented that sterols, the main lipid constituent of the plasma membrane, also accumulate within the patchy compartment. It is documented that this compartmentation is highly dependent on the energization of the membrane. Plasma membrane depolarization causes reversible dispersion of the H + ‐symporters, not however of the Sur7 protein. Mitochondrial mutants, affected in plasma membrane energization, show a significantly lower degree of membrane protein segregation. In accordance with these observations, depolarized membranes also considerably change their physical properties (detergent sensitivity).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here