z-logo
Premium
HAT cofactor Trrap regulates the mitotic checkpoint by modulation of Mad1 and Mad2 expression
Author(s) -
Li Hai,
Cuenin Cyrille,
Murr Rabih,
Wang ZhaoQi,
Herceg Zdenko
Publication year - 2004
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/sj.emboj.7600479
Subject(s) - international agency , agency (philosophy) , library science , mad2 , cancer , political science , biology , sociology , cell cycle checkpoint , social science , genetics , cell cycle , computer science
As a component of chromatin‐modifying complexes with histone acetyltransferase (HAT) activity, TRRAP has been shown to be involved in various cellular processes including gene transcription and oncogenic transformation. Inactivation of Trrap, the murine ortholog of TRRAP, in mice revealed its function in development and cell cycle progression. However, the underlying mechanism is unknown. Here, we show that the loss of Trrap in mammalian cells leads to chromosome missegregation, mitotic exit failure and compromised mitotic checkpoint. These mitotic checkpoint defects are caused by defective Trrap‐mediated transcription of the mitotic checkpoint proteins Mad1 and Mad2. The mode of regulation by Trrap involves acetylation of histones H4 and H3 at the gene promoter of these mitotic players. Trrap associated with the HAT Tip60 and PCAF at the Mad1 and Mad2 promoters in a cell cycle‐dependent manner and Trrap depletion abolished recruitment of these HATs. Finally, ectopic expression of Mad1 and Mad2 fully restores the mitotic checkpoint in Trrap‐deficient cells. These results demonstrate that Trrap controls the mitotic checkpoint integrity by specifically regulating Mad1 and Mad2 genes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here