z-logo
Premium
Coordinating assembly and export of complex bacterial proteins
Author(s) -
Jack Rachael L,
Buchanan Grant,
Dubini Alexandra,
Hatzixanthis Kostas,
Palmer Tracy,
Sargent Frank
Publication year - 2004
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1038/sj.emboj.7600409
Subject(s) - biology , bacterial protein , escherichia coli proteins , computational biology , bacteria , genetics
The Escherichia coli twin‐arginine protein transport (Tat) system is a molecular machine dedicated to the translocation of fully folded substrate proteins across the energy‐transducing inner membrane. Complex cofactor‐containing Tat substrates, such as the model (NiFe) hydrogenase‐2 and trimethylamine N ‐oxide reductase (TorA) systems, acquire their redox cofactors prior to export from the cell and require to be correctly assembled before transport can proceed. It is likely, therefore, that cellular mechanisms exist to prevent premature export of immature substrates. Using a combination of genetic and biochemical approaches including gene knockouts, signal peptide swapping, complementation, and site‐directed mutagenesis, we highlight here this crucial ‘proofreading’ or ‘quality control’ activity in operation during assembly of complex endogenous Tat substrates. Our experiments successfully uncouple the Tat transport and cofactor‐insertion activities of the TorA‐specific chaperone TorD and demonstrate unequivocally that TorD recognises the TorA twin‐arginine signal peptide. It is proposed that some Tat signal peptides operate in tandem with cognate binding chaperones to orchestrate the assembly and transport of complex enzymes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here