z-logo
Premium
Region‐specific effects of N , N ′‐dodecane‐1,12‐diyl‐bis‐3‐picolinium dibromide on nicotine‐induced increase in extracellular dopamine in vivo
Author(s) -
Rahman S,
Zhang Z,
Papke R L,
Crooks P A,
Dwoskin L P,
Bardo M T
Publication year - 2008
Publication title -
british journal of pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.432
H-Index - 211
eISSN - 1476-5381
pISSN - 0007-1188
DOI - 10.1038/sj.bjp.0707612
Subject(s) - mecamylamine , dopamine , nucleus accumbens , chemistry , nicotine , nicotinic agonist , pharmacology , ventral tegmental area , microdialysis , acetylcholine , endocrinology , medicine , dopaminergic , receptor , biochemistry
Background and purpose: Systemic administration of N , N ′‐dodecane‐1,12‐diyl‐bis‐3‐picolinium dibromide (bPiDDB), an antagonist of nicotinic acetylcholine receptors (nAChRs) attenuated the nicotine‐induced increase in dopamine levels in nucleus accumbens (NAcc). Experimental approach: Using in vivo microdialysis, we investigated the effects of local perfusion of the novel nAChR antagonist bPiDDB into the NAcc or ventral tegmental area (VTA) on increased extracellular dopamine in NAcc, induced by systemic nicotine. We also examined the concentration‐dependent effects of bPiDDB on the acetylcholine (ACh)‐evoked response of specific recombinant neuronal nAChR subtypes expressed in Xenopus oocytes, using electrophysiological methods. Key results: Nicotine (0.4 mg kg −1 , s.c.) increased extracellular dopamine in NAcc, which was attenuated by intra‐VTA perfusion of mecamylamine (100 μM). Intra‐VTA perfusion of bPiDDB (1 and 10 μM) reduced nicotine‐induced increases in extracellular dopamine in NAcc. In contrast, intra‐NAcc perfusion of bPiDDB (1 or 10 μM) failed to alter the nicotine‐induced increase in dopamine in NAcc. Intra‐VTA perfusion of bPiDDB alone did not alter basal dopamine levels, compared to control, nor the increased dopamine in NAcc following amphetamine (0.5 mg kg −1 , s.c.). Using Xenopus oocytes, bPiDDB (0.01–100 μM) inhibited the response to ACh on specific combinations of rat neuronal nAChR subunits, with highest potency at α3β4β3 and lowest potency at α6/3β2β3. Conclusions and implications: bPiDDB‐Sensitive nAChRs involved in regulating nicotine‐induced dopamine release are located in the VTA, rather than in the NAcc. As bPiDDB has properties different from the prototypical nAChR antagonist mecamylamine, further development may lead to novel nAChR antagonists for the treatment of tobacco dependence. British Journal of Pharmacology (2008) 153 , 792–804; doi: 10.1038/sj.bjp.0707612 ; published online 3 December 2007

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here