
A Network of SLC and ABC Transporter and DME Genes Involved in Remote Sensing and Signaling in the Gut-Liver-Kidney Axis
Author(s) -
Sara Brin Rosenthal,
Kevin T. Bush,
Sanjay K. Nigám
Publication year - 2019
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/s41598-019-47798-x
Subject(s) - adme , biology , transporter , gene , gene regulatory network , atp binding cassette transporter , computational biology , regulation of gene expression , pregnane x receptor , gene expression , transcription factor , microbiology and biotechnology , genetics , pharmacology , nuclear receptor , drug
Genes central to drug absorption, distribution, metabolism and elimination (ADME) also regulate numerous endogenous molecules. The Remote Sensing and Signaling Hypothesis argues that an ADME gene-centered network—including SLC and ABC “drug” transporters, “drug” metabolizing enzymes (DMEs), and regulatory genes—is essential for inter-organ communication via metabolites, signaling molecules, antioxidants, gut microbiome products, uremic solutes, and uremic toxins. By cross-tissue co-expression network analysis, the gut, liver, and kidney (GLK) formed highly connected tissue-specific clusters of SLC transporters, ABC transporters, and DMEs. SLC22, SLC25 and SLC35 families were network hubs, having more inter-organ and intra-organ connections than other families. Analysis of the GLK network revealed key physiological pathways (e.g., involving bile acids and uric acid). A search for additional genes interacting with the network identified HNF4α, HNF1α, and PXR. Knockout gene expression data confirmed ~60–70% of predictions of ADME gene regulation by these transcription factors. Using the GLK network and known ADME genes, we built a tentative gut-liver-kidney “remote sensing and signaling network” consisting of SLC and ABC transporters, as well as DMEs and regulatory proteins. Together with protein-protein interactions to prioritize likely functional connections, this network suggests how multi-specificity combines with oligo-specificity and mono-specificity to regulate homeostasis of numerous endogenous small molecules.