z-logo
open-access-imgOpen Access
A Network of SLC and ABC Transporter and DME Genes Involved in Remote Sensing and Signaling in the Gut-Liver-Kidney Axis
Author(s) -
Sara Brin Rosenthal,
Kevin T. Bush,
Sanjay K. Nigám
Publication year - 2019
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/s41598-019-47798-x
Subject(s) - adme , biology , transporter , gene , gene regulatory network , atp binding cassette transporter , computational biology , regulation of gene expression , pregnane x receptor , gene expression , transcription factor , microbiology and biotechnology , genetics , pharmacology , nuclear receptor , drug
Genes central to drug absorption, distribution, metabolism and elimination (ADME) also regulate numerous endogenous molecules. The Remote Sensing and Signaling Hypothesis argues that an ADME gene-centered network—including SLC and ABC “drug” transporters, “drug” metabolizing enzymes (DMEs), and regulatory genes—is essential for inter-organ communication via metabolites, signaling molecules, antioxidants, gut microbiome products, uremic solutes, and uremic toxins. By cross-tissue co-expression network analysis, the gut, liver, and kidney (GLK) formed highly connected tissue-specific clusters of SLC transporters, ABC transporters, and DMEs. SLC22, SLC25 and SLC35 families were network hubs, having more inter-organ and intra-organ connections than other families. Analysis of the GLK network revealed key physiological pathways (e.g., involving bile acids and uric acid). A search for additional genes interacting with the network identified HNF4α, HNF1α, and PXR. Knockout gene expression data confirmed ~60–70% of predictions of ADME gene regulation by these transcription factors. Using the GLK network and known ADME genes, we built a tentative gut-liver-kidney “remote sensing and signaling network” consisting of SLC and ABC transporters, as well as DMEs and regulatory proteins. Together with protein-protein interactions to prioritize likely functional connections, this network suggests how multi-specificity combines with oligo-specificity and mono-specificity to regulate homeostasis of numerous endogenous small molecules.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here