z-logo
open-access-imgOpen Access
Retinal Angiogenesis Regulates Astrocytic Differentiation in Neonatal Mouse Retinas by Oxygen Dependent Mechanisms
Author(s) -
Li Duan,
Sarah Pan,
Thomas N. Sato,
GuoHua Fong
Publication year - 2017
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/s41598-017-17962-2
Subject(s) - retinal , retina , hyperoxia , astrocyte , biology , microbiology and biotechnology , cellular differentiation , muller glia , angiogenesis , neuroglia , hypoxia (environmental) , progenitor cell , neuroscience , chemistry , stem cell , medicine , central nervous system , cancer research , genetics , oxygen , biochemistry , lung , organic chemistry , gene
In mice, retinal vascular and astrocyte networks begin to develop at birth, expanding radially from the optic nerve head (ONH) towards the retinal periphery. The retinal vasculature grows towards the periphery ahead of differentiated astrocytes, but behind astrocytic progenitor cells (APCs) and immature astrocytes. Endothelial cell specific Vegfr-2 disruption in newborn mice not only blocked retinal vascular development but also suppressed astrocytic differentiation, reducing the abundance of differentiated astrocytes while causing the accumulation of precursors. By contrast, retinal astrocytic differentiation was accelerated by the exposure of wild-type newborn mice to hyperoxia for 24 hours, or by APC specific deficiency in hypoxia inducible factor (HIF)−2α, an oxygen labile transcription factor. These findings reveal a novel function of the retinal vasculature, and imply that in normal neonatal mice, oxygen from the retinal circulation may promote astrocytic differentiation, in part by triggering oxygen dependent HIF-2α degradation in astrocytic precursors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here