
Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses
Author(s) -
Bin Yang,
Wenjian Lu,
Jiaolong Zhang,
J. Q. Wang,
E. Ma
Publication year - 2017
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/s41598-017-11504-6
Subject(s) - materials science , metallurgy , amorphous metal , metal , alloy
Salt-fluxing treatment is an effective technique to improve the glass-forming ability (GFA) of bulk metallic glass (BMG)-forming melts, as demonstrated before in Pd- and Fe-based systems. However, it has been challenging to develop similar fluxing protocol for more reactive melts, such as Al-rich BMG-forming systems. Here we design new fluxing agents, from a thermodynamics perspective that takes into account combined effects of physical absorption and chemical absorption (reaction) between the fluxing agents and oxide inclusions. MgCl 2 -CaCl 2 composite salts were selected, and their fluxing effects were systematically studied on an Al 86 Ni 6.75 Co 2.25 Y 3.25 La 1.75 alloy, the best BMG-forming composition reported thus far for Al-rich alloy systems. The oxygen content was found to continuously decrease in the master alloy with increasing cycles of salt-fluxing treatment, with chlorate products on the surface suggesting concurrent physical absorption and chemical reaction. The fluxing treatment developed has enabled a record critical size (diameter) of 2.5 mm for Al-based BMGs. Our finding is thus an advance in developing highly desirable Al-based BMGs, and also provides guidance for designing processing protocol to produce larger-sized BMGs in other reactive systems.