
Novelty application of multi-omics correlation in the discrimination of sulfur-fumigation and non-sulfur-fumigation Ophiopogonis Radix
Author(s) -
Shengyun Dai,
Zhanpeng Shang,
Fei Wang,
Yanfeng Cao,
Xinyuan Shi,
Zhaozhou Lin,
Zhibin Wang,
Ning Li,
JianQiu Lu,
Yanjiang Qiao,
Jiayu Zhang
Publication year - 2017
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/s41598-017-10313-1
Subject(s) - radix (gastropod) , sulfur , chemistry , chromatography , computational biology , biology , botany , organic chemistry
A rapid and sensitive approach to differentiate sulfur-fumigated (SF) Ophiopogonis Radix based on Multi-Omics Correlation Analysis (MOCA) strategy was first established. It was characterized by multiple data-acquisition methods (NIR, HPLC, and UHPLC-HRMS) based metabonomics and multivariate statistical analysis methods. As a result, SF and non-sulfur fumigated (NSF) Ophiopogonis Radix samples were efficaciously discriminated. Moreover, based on the acquired HRMS data, 38 sulfur-containing discriminatory markers were eventually characterized, whose NIR absorption could be in close correlation with the discriminatory NIR wavebands (5000–5200 cm −1 ) screened by NIR metabonomics coupled with SiPLS and 2D-COS methods. This results were also validated from multiple perspectives, including metabonomics analysis based on the discriminatory markers and the simulation of SF ophiopogonin D and Ophiopogonis Radix sample. In conclusion, our results first revealed the intrinsic mechanism of discriminatory NIR wavebands by means of UHPLC-HRMS analysis. Meanwhile, the established MOCA strategy also provided a promising NIR based differential method for SF Ophiopogonis Radix, which could be exemplary for future researches on rapid discrimination of other SF Chinese herbal medicines.