z-logo
open-access-imgOpen Access
Colossal permittivity behavior and its origin in rutile (Mg1/3Ta2/3)xTi1-xO2
Author(s) -
Wen Dong,
Dehong Chen,
Wanbiao Hu,
Terry J. Frankcombe,
Hua Chen,
Chao Zhou,
Zhenxiao Fu,
Xiaoyong Wei,
Chao Wang,
Zhifu Liu,
Yongxiang Li,
Yun Liu
Publication year - 2017
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/s41598-017-08992-x
Subject(s) - materials science , analytical chemistry (journal) , chemistry , chromatography
This work investigates the synthesis, chemical composition, defect structures and associated dielectric properties of (Mg 2+ , Ta 5+ ) co-doped rutile TiO 2 polycrystalline ceramics with nominal compositions of (Mg 2+ 1/3 Ta 5+ 2/3 ) x Ti 1− x O 2 . Colossal permittivity (>7000) with a low dielectric loss (e.g. 0.002 at 1 kHz) across a broad frequency/temperature range can be achieved at x  = 0.5% after careful optimization of process conditions. Both experimental and theoretical evidence indicates such a colossal permittivity and low dielectric loss intrinsically originate from the intragrain polarization that links to the electron-pinned \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{M}}{{\bf{g}}}_{{\bf{T}}{\bf{i}}}^{{\prime}{\prime} }+{{\bf{V}}}_{{\bf{O}}}^{\bullet \bullet }+{\bf{2}}{\bf{T}}{{\bf{a}}}_{{\bf{T}}{\bf{i}}}^{\bullet }+{\bf{2}}{\bf{T}}{{\bf{i}}}_{{\bf{T}}{\bf{i}}}^{\prime}$$\end{document} M g T i′ ′+ V O • • + 2 T a T i • + 2 T i T i ′defect clusters with a specific configuration, different from the defect cluster form previously reported in tri-/pent-valent ion co-doped rutile TiO 2 . This work extends the research on colossal permittivity and defect formation to bi-/penta-valent ion co-doped rutile TiO 2 and elucidates a likely defect cluster model for this system. We therefore believe these results will benefit further development of colossal permittivity materials and advance the understanding of defect chemistry in solids.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here