Research Library

open-access-imgOpen AccessThe evolution of animal Argonautes: evidence for the absence of antiviral AGO Argonautes in vertebrates
Niels Wynant,
Dulce Santos,
Jozef Vanden Broeck
Publication year2017
Publication title
scientific reports
Resource typeJournals
PublisherNature Portfolio
In addition to mediating regulation of endogenous gene expression, RNA interference (RNAi) in plants and invertebrates plays a crucial role in defense against viruses via virus-specific siRNAs. Different studies have demonstrated that the functional diversity of RNAi in animals is linked to the diversification of the Argonaute superfamily, central components of RISCs (RNA induced silencing complexes). The animal Argonaute superfamily is traditionally grouped into AGO and PIWI Argonautes. Yet, by performing phylogenetic analyses and determining the selective evolutionary pressure in the metazoan Argonaute superfamily, we provide evidence for the existence of three conserved Argonaute lineages between basal metazoans and protostomes, namely siRNA-class AGO, miRNA-class AGO and PIWI Argonautes. In addition, it shown that the siRNA-class AGO lineage is characterized by high rates of molecular evolution, suggesting a role in the arms race with viruses, while the miRNA-class AGOs display strong sequence conservation. Interestingly, we also demonstrate that vertebrates lack siRNA-class AGO proteins and that vertebrate AGOs display low rates of molecular evolution. In this way, we provide supportive evidence for the loss of the antiviral siRNA-class AGO group in vertebrates and discuss the consequence hereof on antiviral immunity and the use of RNAi as a loss of function tool in these animals.
Subject(s)argonaute , biology , caenorhabditis elegans , computational biology , evolutionary biology , gene , gene silencing , genetics , lineage (genetic) , microrna , phylogenetics , piwi interacting rna , rna , rna interference , small rna
SCImago Journal Rank1.24

Seeing content that should not be on Zendy? Contact us.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here