
Training-induced dynamics of accuracy and precision in human motor control
Author(s) -
Abhishek Kumar,
Yuto Tanaka,
Anastasios Grigoriadis,
Joannis Grigoriadis,
Mats Trulsson,
Peter Svensson
Publication year - 2017
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/s41598-017-07078-y
Subject(s) - accuracy and precision , computer science , simulation , force dynamics , control theory (sociology) , physical medicine and rehabilitation , medicine , mathematics , artificial intelligence , control (management) , statistics , engineering , mechanical engineering
The study investigated the dynamic changes in accuracy and precision during a simple oral and digital motor task involving a controlled and a ballistic force. Eighteen healthy participants participated in four experimental sessions during which they performed one hundred trials of targeting a controlled (low/high hold force) and a ballistic force during an oral and a digital motor task (OMT and DMT). Accuracy and precision across one hundred trials were calculated and subjected to segmented linear regression analysis. Repeated performance of controlled forces show a significant dynamic change in accuracy during initial stage of targeting high hold forces during OMT and a significant dynamic change in both accuracy and precision during final stage of targeting high hold forces during DMT. Repeated performance of ballistic force showed a significant dynamic change in both accuracy and precision during final stage of targeting high hold force forces during OMT and a significant dynamic change in accuracy during the initial stages of targeting high hold force during the DMT. The findings indicate a subtle degree of dissociation between accuracy and precision in terms of dynamic modulation of forces due to repeated performance of both OMT and DMT.