
Antibacterial cellulose paper made with silver-coated gold nanoparticles
Author(s) -
Tsung-Cheng Tsai,
Tse-Hao Huang,
Chih-Jung Chang,
Natalie YiJu Ho,
YuTing Tseng,
C. F. Chen
Publication year - 2017
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/s41598-017-03357-w
Subject(s) - antibacterial activity , cellulose , nanoparticle , materials science , coating , silver nanoparticle , chemical engineering , nuclear chemistry , precipitation , nanotechnology , chemistry , bacteria , organic chemistry , meteorology , genetics , physics , engineering , biology
In this study, we investigated the antibacterial activity of silver-coated gold nanoparticles (Au-Ag NPs) immobilized on cellulose paper. Ag NPs are known to have strong antibacterial properties, while Au NPs are biocompatible and relatively simple to prepare. We made the Au-Ag NPs using a facile process called Ag enhancement, in which Au NPs serve as the nuclei for precipitation of a Ag coating, the thickness of which can be easily controlled by varying the ratio of the reactants. After synthesis, electron microscopy showed that the Au-Ag NPs displayed a core-shell structure, and that they could be successfully immobilized onto a cellulose membrane by heat treatment. We then investigated the antibacterial properties of this NP-coated cellulose paper against E . coli JM109. The inhibition rate, growth curve, and AATCC 100 activity test showed that cellulose paper coated with 15 nm Au-Ag NPs possessed excellent antibacterial activity against E . coli JM109. These results suggest that Au-Ag NPs immobilized on cellulose paper could be a valuable antibacterial technology for applications such as food packaging, clothing, wound dressings, and other personal care products.