z-logo
open-access-imgOpen Access
Modulation of Peptide Based Nano-Assemblies with Electric and Magnetic Fields
Author(s) -
Gaurav Pandey,
Jahnu Saikia,
Sajitha Sasidharan,
D. C. Joshi,
Subhash Thota,
Harshal B. Nemade,
Nitin Chaudhary,
Vibin Ramakrishnan
Publication year - 2017
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/s41598-017-02609-z
Subject(s) - electric field , nanotechnology , nano , materials science , self assembly , peptide , molecular dynamics , chemical physics , chemistry , nuclear magnetic resonance , physics , computational chemistry , quantum mechanics , composite material
Peptide based nano-assemblies with their self-organizing ability has shown lot of promise due to their high degree of thermal and chemical stability, for biomaterial fabrication. Developing an effective way to control the organization of these structures is important for fabricating application-oriented materials at the molecular level. The present study reports the impact of electric and magnetic field-mediated perturbation of the self-assembly phenomenon, upon the chemical and structural properties of diphenylalanine assembly. Our studies show that, electric field effectively arrests aggregation and self-assembly formation, while the molecule is allowed to anneal in the presence of applied electric fields of varying magnitudes, both AC and DC. The electric field exposure also modulated the morphology of the self-assembled structures without affecting the overall chemical constitution of the material. Our results on the modulatory effect of the electric field are in good agreement with theoretical studies based on molecular dynamics reported earlier on amyloid forming molecular systems. Furthermore, we demonstrate that the self-assemblies formed post electric-field exposure, showed difference in their crystal habit. Modulation of nano-level architecture of peptide based model systems with external stimulus, points to a potentially rewarding strategy to re-work proven nano-materials to expand their application spectrum.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here