z-logo
open-access-imgOpen Access
A starvation-induced regulator, RovM, acts as a switch for planktonic/biofilm state transition in Yersinia pseudotuberculosis
Author(s) -
Ruoxi Zhao,
Yunhong Song,
Qingyun Dai,
Yiwen Kang,
Junfeng Pan,
Lingfang Zhu,
Lei Zhang,
Yao Wang,
Xihui Shen
Publication year - 2017
Publication title -
scientific reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 213
ISSN - 2045-2322
DOI - 10.1038/s41598-017-00534-9
Subject(s) - biofilm , yersinia pseudotuberculosis , operon , regulator , biology , microbiology and biotechnology , motility , bacteria , mutant , transcriptional regulation , gene , gene expression , genetics , virulence
The transition between the planktonic state and the biofilm-associated state is a key developmental decision for pathogenic bacteria. Biofilm formation by Yersinia pestis is regulated by hmsHFRS genes (β-1, 6-N-acetyl-D-glucosamine synthesis operon) in its flea vector and in vitro . However, the mechanism of biofilm formation in Yersinia pseudotuberculosis remains elusive. In this study, we demonstrate that the LysR-type regulator RovM inversely regulates biofilm formation and motility in Y. pseudotuberculosis by acting as a transcriptional regulator of these two functions. RovM is strongly induced during growth in minimal media but strongly repressed in complex media. On one hand, RovM enhances bacterial motility by activating the expression of FlhDC, the master regulator of flagellar genes, via the recognition of an operator upstream of the flhDC promoter. On the other hand, RovM represses β-GlcNAc production under nutrition-limited conditions, negatively regulating hmsHFRS expression by directly binding to the −35 element of its promoter. Compared to wild-type bacteria, the rovM mutant established denser biofilms and caused more extensive mortality in mice and silkworm larvae. These results indicate that RovM acts as a molecular switch to coordinate the expression of genes involved in biofilm formation and motility in response to the availability of nutrients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here