
Real-time observation of CRISPR spacer acquisition by Cas1–Cas2 integrase
Author(s) -
Jagat B. Budhathoki,
Yibei Xiao,
Gabriel Schuler,
Chunyi Hu,
Alexander H.D. Cheng,
Fran Ding,
Ailong Ke
Publication year - 2020
Publication title -
nature structural and molecular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.448
H-Index - 270
eISSN - 1545-9993
pISSN - 1545-9985
DOI - 10.1038/s41594-020-0415-7
Subject(s) - crispr , integrase , computational biology , dna , förster resonance energy transfer , biology , genetics , gene , physics , fluorescence , quantum mechanics
Cas1 integrase associates with Cas2 to insert short DNA fragments into a CRISPR array, establishing nucleic acid memory in prokaryotes. Here we applied single-molecule FRET methods to the Enterococcus faecalis (Efa) Cas1-Cas2 system to establish a kinetic framework describing target-searching, integration, and post-synapsis events. EfaCas1-Cas2 on its own is not able to find the CRISPR repeat in the CRISPR array; it only does so after prespacer loading. The leader sequence adjacent to the repeat further stabilizes EfaCas1-Cas2 contacts, enabling leader-side integration and subsequent spacer-side integration. The resulting post-synaptic complex (PSC) has a surprisingly short mean lifetime. Remarkably, transcription effectively resolves the PSC, and we predict that this is a conserved mechanism that ensures efficient and directional spacer integration in many CRISPR systems. Overall, our study provides a complete model of spacer acquisition, which can be harnessed for DNA-based information storage and cell lineage tracing technologies.