
Decoding molecular and cellular heterogeneity of mouse nucleus accumbens
Author(s) -
Renchao Chen,
Timothy R. Blosser,
Mohamed Nadhir Djekidel,
Junjie Hao,
Aritra Bhattacherjee,
Wenqiang Chen,
Luis M. Tuesta,
Xiaowei Zhuang,
Yi Zhang
Publication year - 2021
Publication title -
nature neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 13.403
H-Index - 422
eISSN - 1546-1726
pISSN - 1097-6256
DOI - 10.1038/s41593-021-00938-x
Subject(s) - nucleus accumbens , neuroscience , biology , neuron , central nervous system
The nucleus accumbens (NAc) plays an important role in regulating multiple behaviors, and its dysfunction has been linked to many neural disorders. However, the molecular, cellular and anatomic heterogeneity underlying its functional diversity remains incompletely understood. In this study, we generated a cell census of the mouse NAc using single-cell RNA sequencing and multiplexed error-robust fluorescence in situ hybridization, revealing a high level of cell heterogeneity in this brain region. Here we show that the transcriptional and spatial diversity of neuron subtypes underlie the NAc's anatomic and functional heterogeneity. These findings explain how the seemingly simple neuronal composition of the NAc achieves its highly heterogenous structure and diverse functions. Collectively, our study generates a spatially resolved cell taxonomy for understanding the structure and function of the NAc, which demonstrates the importance of combining molecular and spatial information in revealing the fundamental features of the nervous system.