
Modeling the complex genetic architectures of brain disease
Author(s) -
Michael B. Fernando,
Tim Ahfeldt,
Kristen Brennand
Publication year - 2020
Publication title -
nature genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 18.861
H-Index - 573
eISSN - 1546-1718
pISSN - 1061-4036
DOI - 10.1038/s41588-020-0596-3
Subject(s) - biology , crispr , computational biology , context (archaeology) , induced pluripotent stem cell , disease , genomics , genetic architecture , functional genomics , genome , genome editing , genetics , gene , phenotype , paleontology , embryonic stem cell , medicine , pathology
The genetic architecture of each individual comprises common and rare variants that, acting alone and in combination, confer risk of disease. The cell-type-specific and/or context-dependent functional consequences of the risk variants linked to brain disease must be resolved. Coupling human induced pluripotent stem cell (hiPSC)-based technology with CRISPR-based genome engineering facilitates precise isogenic comparisons of variants across genetic backgrounds. Although functional-validation studies are typically performed on one variant in isolation and in one cell type at a time, complex genetic diseases require multiplexed gene perturbations to interrogate combinations of genes and resolve physiologically relevant disease biology. Our aim is to discuss advances at the intersection of genomics, hiPSCs and CRISPR. A better understanding of the molecular mechanisms underlying disease risk will improve genetic diagnosis, drive phenotypic drug discovery and pave the way toward precision medicine.