
Spatially informed cell-type deconvolution for spatial transcriptomics
Author(s) -
Ying Ma,
Xiang Zhou
Publication year - 2022
Publication title -
nature biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.358
H-Index - 445
eISSN - 1546-1696
pISSN - 1087-0156
DOI - 10.1038/s41587-022-01273-7
Subject(s) - deconvolution , computational biology , cell type , spatial analysis , computer science , transcriptome , spatial organization , biology , artificial intelligence , pattern recognition (psychology) , cell , data mining , gene expression , gene , algorithm , mathematics , statistics , genetics , ecology
Many spatially resolved transcriptomic technologies do not have single-cell resolution but measure the average gene expression for each spot from a mixture of cells of potentially heterogeneous cell types. Here, we introduce a deconvolution method, conditional autoregressive-based deconvolution (CARD), that combines cell-type-specific expression information from single-cell RNA sequencing (scRNA-seq) with correlation in cell-type composition across tissue locations. Modeling spatial correlation allows us to borrow the cell-type composition information across locations, improving accuracy of deconvolution even with a mismatched scRNA-seq reference. CARD can also impute cell-type compositions and gene expression levels at unmeasured tissue locations to enable the construction of a refined spatial tissue map with a resolution arbitrarily higher than that measured in the original study and can perform deconvolution without an scRNA-seq reference. Applications to four datasets, including a pancreatic cancer dataset, identified multiple cell types and molecular markers with distinct spatial localization that define the progression, heterogeneity and compartmentalization of pancreatic cancer.